Creating a Simple Dynamic-Link Library

The following example, MYPUTS.C, is the source code needed to create a simple DLL, MYPUTS.DLL. The file MYPUTS.C contains a simple string-printing function called myPuts. The MYPUTS DLL does not define an entry-point function, because it is linked with the C run-time library and has no initialization or cleanup functions of its own to perform.

// File: MYPUTS.C.

// The myPuts function writes a null-terminated string to

// the standard output device.

// The export mechanism used here is the __declspec(export)

// method supported by Microsoft Visual Studio, but any

// other export method supported by your development

// environment may be substituted.

#include <windows.h>

#define EOF (-1)

#ifdef __cplusplus // If used by C++ code,

extern "C" { // we need to export the C interface

#endif

__declspec(dllexport) int myPuts(LPTSTR lpszMsg)

{

 DWORD cchWritten;

 HANDLE hStdout;

 BOOL fRet;

 // Get a handle to the standard output device.

 hStdout = GetStdHandle(STD_OUTPUT_HANDLE);

 if (INVALID_HANDLE_VALUE == hStdout)

 return EOF;

 // Write a null-terminated string to the standard output device.

 while (*lpszMsg != '\0')

 {

 fRet = WriteFile(hStdout, lpszMsg, 1, &cchWritten, NULL);

 if((FALSE == fRet) || (1 != cchWritten))

 return EOF;

 lpszMsg++;

 }

 return 1;

}

#ifdef __cplusplus

}

#endif

To build the DLL, follow the directions in the documentation included with your development tools.

	

	 Last updated: April 2004 | What did you think of this topic? | Order a Platform SDK CD

	 © 2004 Microsoft Corporation. All rights reserved. Terms of use.

