Analysis of Algorithms

NP \& NP-Complete

Prof. Muhammad Saeed

Classes Of Problems

1. P
2. NP
3. NP-Complete (NPC, NP-C)

Classes Of Problems

1. P :

Consists of those problems that are solvable in polynomial time. More specifically, they are problems that can be solved in time $O\left(n^{k}\right)$ for some constant k, where n is the size of the input to the problem. They are called easy or tractable. Problems that require superpolynomial time as being intractable, or hard.
2. NP:

Consists of those problems that are verifiable in polynomial time, it means if we were somehow given a 'certificate' of a solution, then we could verify that the certificate is correct in polynomial time in the size of the input to the problem.

3. NPC (NP-Complete):

Problems in NP and as hard as any problem in NP. No polynomial-time algorithm has yet been discovered for an NP-complete problem, nor has anyone yet been able to prove that no polynomial-time algorithm can exist for any one of them.

Complexity Class P

\rightarrow Deterministic in nature
\rightarrow Solved by conventional computers in polynomial time
$\Rightarrow \mathrm{O}(1)$

- O($\log \mathrm{n})$
$\Rightarrow \mathrm{O}(\mathrm{n})$
- $O(n \log n)$
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$
$\Rightarrow \mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$

Constant
Sub-linear
Linear
Nearly Linear
Quadratic
k-Polynomial

- Polynomial upper and lower bounds

Shortest vs. longest simple paths:

Even with negative edge weights, we can find shortest paths from a single source in a directed graph $G=(V, E)$ in $\mathrm{O}(\mathrm{V} E)$ time. Finding a longest simple path between two vertices is difficult, however. Merely determining whether a graph contains a simple path with at least a given number of edges is NP-complete.

Euler tour vs. hamiltonian cycle: An Euler tour of a connected, directed graph

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a cycle that traverses each edge of G exactly once, although it may visit a vertex more than once. We can determine whether a graph has an Euler tour in only O(E) time and, in fact, we can find the edges of the Euler tour in O(E) time. A hamiltonian cycle of a directed graph $G=(V, E)$ is a simple cycle that contains each vertex in V. Determining whether a directed graph has a hamiltonian cycle is NP-complete. determining whether an undirected graph has a hamiltonian cycle is NP-complete.

2-CNF satisfiability vs. 3-CNF satisfiability: A boolean formula contains variables

whose values are 0 or 1 ; boolean connectives such as \wedge (AND), \vee (OR), and \neg (NOT); and parentheses. A boolean formula is satisfiable if there is some assignment of the values 0 and 1 to its variables that causes it to evaluate to 1. A boolean formula is in k-conjunctive normal form, or k-CNF, if it is the AND of clauses of ORs of exactly k variables or their negations. For example, the boolean formula $(x 1 \vee \neg x 2) \wedge(\neg x 1 \vee x 3) \wedge(\neg x 2$ $\vee \neg x 3$) is in 2-CNF. (It has the satisfying assignment $x 1=1, x 2=$ $0, x 3=1$.) There is a polynomial-time algorithm to determine whether a 2-CNF formula is satisfiable, a 3-CNF formula is satisfiable is NP-complete.

Relation among P, NP, NPC

$\Rightarrow P \subseteq N P$ (Sure)
$\Rightarrow N P C \subseteq N P$ (sure)
$\Rightarrow P=N P($ or $P \subset N P$, or $P \neq N P$) ???
$\Rightarrow N P C=N P($ or NPC $\subset N P$, or NPC $\neq N P)$???
$\Rightarrow P \neq N P$: one of the deepest, most perplexing open research problems in (theoretical) computer science since 1971.
\Rightarrow Any problem in P is also in $N P$, since if a problem is in P then we can solve it in polynomial time without even being given a certificate.
>Most theoretical computer scientists believe that NPC is intractable (i.e., hard, and $P \neq N P$).

View of Theoretical Computer Scientists on P, NP, NPC

$P \subset N P, N P C \subset N P, P \cap N P C=\varnothing$

Why discussion on NPC

\Rightarrow If a problem is proved to be NPC, a good evidence for its intractability (hardness).
\Rightarrow Not waste time on trying to find efficient algorithm for it

- Instead, focus on design approximate algorithm or a solution for a special case of the problem
- Some problems looks very easy on the surface, but in fact, is hard (NPC).

Decision VS. Optimization Problems

- Decision problem: solving the problem by giving an answer "YES" or "NO"
- Optimization problem: solving the problem by finding the optimal solution.
- Examples:
$>$ SHORTEST-PATH (optimization)
Given G, u, v, find a path from u to v with fewest edges.
$>$ PATH (decision)
Given $\mathrm{G}, \mathrm{u}, \mathrm{v}$, and k , whether exist a path from u to v consisting of at most k edges.

Decision VS. Optimization Problems (Cont.)

\Rightarrow Decision is easier (i.e., no harder) than optimization
\Rightarrow If there is an algorithm for an optimization problem, the algorithm can be used to solve the corresponding decision problem.

- Example: SHORTEST-PATH for PATH
- If optimization is easy, its corresponding decision is also easy. Or in another way, if provide evidence that decision problem is hard, then the corresponding optimization problem is also hard.
\Rightarrow NPC is confined to decision problem. (also applicable to optimization problem.)
$>$ Another reason is that: easy to define reduction between decision problems.

(Poly) reduction between decision problems

- Problem (class) and problem instance
- Instance α of decision problem A and instance β of decision problem B
\Rightarrow A reduction from A to B is a transformation with the following properties:
$>$ The transformation takes poly time
The answer is the same (the answer for α is YES if and only if the answer for β is YES).

Implication of (poly) reduction

1. If decision algorithm for B is poly, so does A.
A is no harder than B (or B is no easier than A)
2. If A is hard (e.g., NPC), so does B.
3. How to prove a problem B to be NPC ??
(at first, prove B is in NP, which is generally easy.)
3.1 find a already proved NPC problem A

Question: What is and how to prove the first NPC problem?
Circuit-satisfiability problem.

Travelling Salesman Problem (TSP)

For each two cities, an integer cost is given to travel from one of the two cities to the other. The salesperson wants to make a minimum cost circuit visiting each city exactly once.

Circuit-SAT

Take a Boolean circuit with a single output node and ask whether there is an assignment of values to the circuit's inputs so that the output is " 1 "

Two instances of circuit satisfiability problems

(a)

(b)

Figure 34.8 Two instances of the circuit-satisfiability problem. (a) The assignment $\left\langle x_{1}=1\right.$, $\left.x_{2}=1, x_{3}=0\right\rangle$ to the inputs of this circuit causes the output of the circuit to be 1 . The circuit is therefore satisfiable. (b) No assignment to the inputs of this circuit can cause the output of the circuit to be 1 . The circuit is therefore unsatisfiable.

Knapsack

Given s and w can we translate a subset of rectangles to have their bottom edges on L so that the total area of the rectangles touching L is at least w?

5-Clique

Analysis OF Algorithms NP-NP-

Vertex Cover

A graph and its complement.

Note that there is a 4-clique (consisting of vertices a, b, d, and f) in the graph on the left. Note also that the vertices not in this clique (namely c and e) do form a cover for the complement of this graph (which appears on the right).

The Halting Problem

\Rightarrow Given an algorithm A and an input I, will the algorithm reach a stopping place?

```
loop
    exit if (x = 1)
    if (even(x)) then
        x}\leftarrowx\operatorname{div}
    else
        x\leftarrow3*x+1
endloop
```

\Rightarrow In general, we cannot solve this problem in finite time.

Hamiltonian Path

Figure 34.2 (a) A graph representing the vertices, edges, and faces of a dodecahedron, with a hamiltonian cycle shown by shaded edges. (b) A bipartite graph with an odd number of vertices. Any such graph is nonhamiltonian.

Euler tour vs. hamiltonian cycle: An

 Euler tour of a connected, directed graph$G=(V, E)$ is a cycle that traverses each edge of G exactly once, although
it may visit a vertex more than once. We can determine whether a graph has an Euler tour in only $O(E)$ time and, in fact, we can find

Figure $\mathbf{3 4 . 1 0}$ Reducing circuit satisfiability to formula satisfiability. The formula produced by the reduction algorithm has a variable for each wire in the circuit.

END

