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1. P 
2. NP 
3. NP-Complete (NPC, NP-C) 
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1. P:   
  Consists of those problems that are solvable in polynomial 

time. More specifically, they are problems that can be 
solved in time O(nk) for some constant k, where n is the 
size of the input to the problem. They are called easy or 
tractable. Problems that require superpolynomial time as 
being intractable, or hard. 

2. NP:  
 Consists of those problems that are verifiable in 

polynomial time, it means if we were somehow given a 
‘certificate’ of a solution, then we could verify that the 
certificate is correct in polynomial time in the size of the 
input to the problem. 
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3. NPC (NP-Complete):  
  Problems in NP and as hard as any problem in NP. No  
  polynomial-time algorithm has yet been discovered for  
  an NP-complete problem, nor has anyone yet been able 
  to prove that no polynomial-time algorithm can exist for 
  any one of them. 



Deterministic in nature 

Solved by conventional computers in polynomial 
time 

O(1)   Constant 

O(log n)   Sub-linear 

O(n)   Linear 

O(n log n)  Nearly Linear 

O(n2)   Quadratic 

O(nk)   k-Polynomial 

Polynomial upper and lower bounds 
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Shortest vs. longest simple paths:  
Even with negative edge weights, we can find shortest 
paths from a single source in a directed graph G = (V, E) 
in O(V E) time. Finding a longest simple path between 
two vertices is difficult, however. Merely determining 
whether a graph contains a simple path with at least a 
given number of edges is NP-complete. 
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Euler tour vs. hamiltonian cycle: An Euler tour of a 
connected, directed graph 
G = (V, E) is a cycle that traverses each edge of G exactly 
once, although it may visit a vertex more than once.  We 
can determine whether a graph has an Euler tour in only 
O(E) time and, in fact, we can find the edges of the Euler 
tour in O(E) time. A hamiltonian cycle of a directed graph 
G = (V, E) is a simple cycle that contains each vertex in V. 
Determining whether a directed graph has a hamiltonian 
cycle is NP-complete. determining whether an undirected 
graph has a hamiltonian cycle is NP-complete. 
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2-CNF satisfiability vs. 3-CNF satisfiability: A boolean formula 
contains variables 
whose values are 0 or 1; boolean connectives such as ∧ (AND), ∨ 
(OR), and ￢ (NOT); and parentheses. A boolean formula is 
satisfiable if there is some assignment of the values 0 and 1 to its 
variables that causes it to evaluate to 1. A boolean formula is in 
k-conjunctive normal form, or k-CNF, if it is the AND 
of clauses of ORs of exactly k variables or their negations. For 
example, the boolean formula (x1 ∨ ￢x2) ∧ (￢x1 ∨ x3) ∧ (￢x2 
∨ ￢x3) is in 2-CNF. (It has the satisfying assignment x1 = 1, x2 = 
0, x3 = 1.) There is a polynomial-time algorithm to determine 
whether a 2-CNF formula is satisfiable, a 3-CNF formula is 
satisfiable is NP-complete. 
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P  NP  (Sure)  

NPC  NP (sure) 

P = NP (or P  NP, or P  NP) ??? 

NPC = NP (or NPC  NP, or NPC  NP) ??? 

P  NP: one of the deepest, most perplexing open 
research problems in (theoretical) computer science 
since 1971. 

 

 Any problem in P is also in NP, since if a problem is 
 in P then we can solve it in polynomial time without 
 even being given a certificate. 
 
Most theoretical computer scientists believe that  NPC 
 is intractable (i.e., hard, and P  NP). 
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NPC 

P 

NP 

P  NP, NPC  NP, P  NPC =  
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If a problem is proved to be NPC, a good 
evidence for its intractability (hardness). 

Not waste time on trying to find efficient 
algorithm for it 

Instead, focus on design approximate 
algorithm or a solution for a special case 
of the problem 

Some problems looks very easy on the 
surface, but in fact, is hard (NPC). 
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Decision problem: solving the problem by giving 
an answer “YES” or “NO” 

Optimization problem: solving the problem by 
finding the optimal solution. 

Examples:  
  SHORTEST-PATH (optimization) 

 Given G, u,v, find a path from u to v with fewest edges. 

PATH (decision) 

 Given G, u,v, and k, whether  exist a path from u to v 
consisting of at most k edges. 
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Decision is easier (i.e., no harder)  than optimization 

If there is an algorithm for an optimization problem, 
the algorithm can be used to solve the 
corresponding decision problem. 

Example: SHORTEST-PATH for PATH 

If optimization is easy, its corresponding decision is 
also easy. Or in another way, if provide evidence that 
decision problem is hard, then the corresponding 
optimization problem is also hard. 

NPC is confined to decision problem.  (also 
applicable to optimization problem.)  

Another reason is that:  easy to define reduction 
between decision problems. 
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Problem (class) and problem instance 

Instance  of decision problem A and instance 
 of decision problem B 

A reduction from A to B is a transformation 
with the following properties: 

The transformation takes poly time 

The answer is the same (the answer for  is YES if 
and only if the answer for  is YES). 
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(Poly) Reduction Algorithm for B 
  

Decision algorithm for A 

1. If decision algorithm for B is poly, so does A.  

      A is no harder than B (or B is no easier than A) 

2. If A is hard (e.g., NPC), so does B. 

3. How to prove a problem B to be NPC ?? 

3.1 find a already proved NPC problem A 

Question: What is and how to prove the first NPC problem? 

Circuit-satisfiability problem. 

(at first, prove B is in NP, which is generally easy.) 
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For each two cities, an integer cost is given to travel from 
one of the two cities to the other. The salesperson wants to 
make a minimum cost circuit visiting each city exactly once. 
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Logic Gates 

NOT 

AND 

OR 1 

1 

1 0 
0 

0 

1 1 

1 

1 

1 

0 
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Take a Boolean circuit with a single output node and 
ask whether there is an assignment of values to the 
circuit’s inputs so that the output is “1” 
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Given s and w can we translate a subset of 
rectangles to have their bottom edges on L so 
that the total area of the rectangles touching L is 
at least w? 

s 

L 

1 

2 

3 
4 

5 
6 

7 
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A graph and its complement. 

Note that there is a 4-clique (consisting of vertices a, b, 
d, and f) in the graph on the left. Note also that the 
vertices not in this clique (namely c and e) do form a 
cover for the complement of this graph (which appears 
on the right). 
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Given an algorithm A and an input I, will the 
algorithm reach a stopping place? 

 

 

 

 

 

 

In general, we cannot solve this problem in 
finite time. 

loop 

  exit if (x = 1) 

  if (even(x)) then 

    x  x div 2 

  else 

    x  3 * x + 1 

endloop 
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Euler tour vs. hamiltonian cycle: An 

Euler tour of a connected, directed 

graph 

G = (V, E) is a cycle that traverses each 

edge of G exactly once, although 

it may visit a vertex more than once. We 

can determine whether a graph has an 

Euler tour in only O(E) time and, in fact, we 

can find 
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