
Analysis of Algorithms

NP & NP-Complete

Prof. Muhammad Saeed

2 Analysis OF Algorithms NP-NP-Complete Page

1. P
2. NP
3. NP-Complete (NPC, NP-C)

Analysis OF Algorithms NP-NP-
Complete Page

3

1. P:
 Consists of those problems that are solvable in polynomial

time. More specifically, they are problems that can be
solved in time O(nk) for some constant k, where n is the
size of the input to the problem. They are called easy or
tractable. Problems that require superpolynomial time as
being intractable, or hard.

2. NP:
 Consists of those problems that are verifiable in

polynomial time, it means if we were somehow given a
‘certificate’ of a solution, then we could verify that the
certificate is correct in polynomial time in the size of the
input to the problem.

Analysis OF Algorithms NP-NP-
Complete Page

4

3. NPC (NP-Complete):
 Problems in NP and as hard as any problem in NP. No
 polynomial-time algorithm has yet been discovered for
 an NP-complete problem, nor has anyone yet been able
 to prove that no polynomial-time algorithm can exist for
 any one of them.

Deterministic in nature

Solved by conventional computers in polynomial
time

O(1) Constant

O(log n) Sub-linear

O(n) Linear

O(n log n) Nearly Linear

O(n2) Quadratic

O(nk) k-Polynomial

Polynomial upper and lower bounds

5
Analysis OF Algorithms NP-NP-

Complete Page

Analysis OF Algorithms NP-NP-
Complete Page

6

Shortest vs. longest simple paths:
Even with negative edge weights, we can find shortest
paths from a single source in a directed graph G = (V, E)
in O(V E) time. Finding a longest simple path between
two vertices is difficult, however. Merely determining
whether a graph contains a simple path with at least a
given number of edges is NP-complete.

Analysis OF Algorithms NP-NP-
Complete Page

7

Euler tour vs. hamiltonian cycle: An Euler tour of a
connected, directed graph
G = (V, E) is a cycle that traverses each edge of G exactly
once, although it may visit a vertex more than once. We
can determine whether a graph has an Euler tour in only
O(E) time and, in fact, we can find the edges of the Euler
tour in O(E) time. A hamiltonian cycle of a directed graph
G = (V, E) is a simple cycle that contains each vertex in V.
Determining whether a directed graph has a hamiltonian
cycle is NP-complete. determining whether an undirected
graph has a hamiltonian cycle is NP-complete.

Analysis OF Algorithms NP-NP-
Complete Page

8

2-CNF satisfiability vs. 3-CNF satisfiability: A boolean formula
contains variables
whose values are 0 or 1; boolean connectives such as ∧ (AND), ∨
(OR), and ￢ (NOT); and parentheses. A boolean formula is
satisfiable if there is some assignment of the values 0 and 1 to its
variables that causes it to evaluate to 1. A boolean formula is in
k-conjunctive normal form, or k-CNF, if it is the AND
of clauses of ORs of exactly k variables or their negations. For
example, the boolean formula (x1 ∨ ￢x2) ∧ (￢x1 ∨ x3) ∧ (￢x2
∨ ￢x3) is in 2-CNF. (It has the satisfying assignment x1 = 1, x2 =
0, x3 = 1.) There is a polynomial-time algorithm to determine
whether a 2-CNF formula is satisfiable, a 3-CNF formula is
satisfiable is NP-complete.

9

P  NP (Sure)

NPC  NP (sure)

P = NP (or P  NP, or P  NP) ???

NPC = NP (or NPC  NP, or NPC  NP) ???

P  NP: one of the deepest, most perplexing open
research problems in (theoretical) computer science
since 1971.

 Any problem in P is also in NP, since if a problem is
 in P then we can solve it in polynomial time without
 even being given a certificate.

Most theoretical computer scientists believe that NPC
 is intractable (i.e., hard, and P  NP).

Analysis OF Algorithms NP-NP-
Complete Page

Analysis OF Algorithms NP-NP-
Complete Page

10

NPC

P

NP

P  NP, NPC  NP, P  NPC = 

Analysis OF Algorithms NP-NP-
Complete Page

11

If a problem is proved to be NPC, a good
evidence for its intractability (hardness).

Not waste time on trying to find efficient
algorithm for it

Instead, focus on design approximate
algorithm or a solution for a special case
of the problem

Some problems looks very easy on the
surface, but in fact, is hard (NPC).

Analysis OF Algorithms NP-NP-
Complete Page

12

Decision problem: solving the problem by giving
an answer “YES” or “NO”

Optimization problem: solving the problem by
finding the optimal solution.

Examples:
 SHORTEST-PATH (optimization)

 Given G, u,v, find a path from u to v with fewest edges.

PATH (decision)

 Given G, u,v, and k, whether exist a path from u to v
consisting of at most k edges.

Analysis OF Algorithms NP-NP-
Complete Page

13

Decision is easier (i.e., no harder) than optimization

If there is an algorithm for an optimization problem,
the algorithm can be used to solve the
corresponding decision problem.

Example: SHORTEST-PATH for PATH

If optimization is easy, its corresponding decision is
also easy. Or in another way, if provide evidence that
decision problem is hard, then the corresponding
optimization problem is also hard.

NPC is confined to decision problem. (also
applicable to optimization problem.)

Another reason is that: easy to define reduction
between decision problems.

Analysis OF Algorithms NP-NP-
Complete Page

14

Problem (class) and problem instance

Instance  of decision problem A and instance
 of decision problem B

A reduction from A to B is a transformation
with the following properties:

The transformation takes poly time

The answer is the same (the answer for  is YES if
and only if the answer for  is YES).

Analysis OF Algorithms NP-NP-
Complete Page

15

(Poly) Reduction Algorithm for B
 

Decision algorithm for A

1. If decision algorithm for B is poly, so does A.

 A is no harder than B (or B is no easier than A)

2. If A is hard (e.g., NPC), so does B.

3. How to prove a problem B to be NPC ??

3.1 find a already proved NPC problem A

Question: What is and how to prove the first NPC problem?

Circuit-satisfiability problem.

(at first, prove B is in NP, which is generally easy.)

Analysis OF Algorithms NP-NP-
Complete Page

16

For each two cities, an integer cost is given to travel from
one of the two cities to the other. The salesperson wants to
make a minimum cost circuit visiting each city exactly once.

Analysis OF Algorithms NP-NP-
Complete Page

17

Logic Gates

NOT

AND

OR 1

1

1 0
0

0

1 1

1

1

1

0

0

Take a Boolean circuit with a single output node and
ask whether there is an assignment of values to the
circuit’s inputs so that the output is “1”

Analysis OF Algorithms NP-NP-
Complete Page

18

Analysis OF Algorithms NP-NP-
Complete Page

19

Given s and w can we translate a subset of
rectangles to have their bottom edges on L so
that the total area of the rectangles touching L is
at least w?

s

L

1

2

3
4

5
6

7

Analysis OF Algorithms NP-NP-
Complete Page

20

Analysis OF Algorithms NP-NP-
Complete Page

21

A graph and its complement.

Note that there is a 4-clique (consisting of vertices a, b,
d, and f) in the graph on the left. Note also that the
vertices not in this clique (namely c and e) do form a
cover for the complement of this graph (which appears
on the right).

Analysis OF Algorithms NP-NP-
Complete Page

22

Given an algorithm A and an input I, will the
algorithm reach a stopping place?

In general, we cannot solve this problem in
finite time.

loop

 exit if (x = 1)

 if (even(x)) then

 x  x div 2

 else

 x  3 * x + 1

endloop

Analysis OF Algorithms NP-NP-
Complete Page

23

Analysis OF Algorithms NP-NP-
Complete Page

24

Euler tour vs. hamiltonian cycle: An

Euler tour of a connected, directed

graph

G = (V, E) is a cycle that traverses each

edge of G exactly once, although

it may visit a vertex more than once. We

can determine whether a graph has an

Euler tour in only O(E) time and, in fact, we

can find

Analysis OF Algorithms NP-NP-
Complete Page

25

Analysis OF Algorithms NP-NP-
Complete Page

26

