Introduction

Prof. Muhammad Saeed

- Dynamic programming like the divide and conquer method, solves problem by combining the solutions of sub problems
- Divide and conquer method partitions the problem into independent sub problems, solves the sub problems recursively and then combine their solutions to solve the original problem.
- Dynamic programming is applicable, when the sub-problems are NOT independent, that is when sub-problems share sub subproblems.
- It is making a set of choices to arrive at optimal solution.
- A dynamic programming algorithm solves every sub-problem just once and then saves its answer in a table, thereby avoiding the work of re-computing the answer every time the subproblem is encountered

Optimization Problems

Dynamic problem is typically applied to Optimization Problems

In optimization problems there can be many possible solutions. Each solution has a value and the task is to find the solution with the optimal (Maximum or Minimum) value. There can be several such solutions.

4 Steps of Dynamic Programming Algorithm

- Characterize the structure of an optimal solution.
- Recursively define the value of an optimal solution.
- Compute the value of an optimal solution bottom-up.
- Construct an optimal solution from computed information

Often only the value of the optimal solution is required so step-4 is not necessary.

- Dynamic programming relies on working "from the bottom up" and saving the results of solving simpler problems
 - These solutions to simpler problems are then used to compute the solution to more complex problems
- Dynamic programming solutions can often be quite complex and tricky
- Dynamic programming is used for optimization problems, especially ones that would otherwise take exponential time
 - Only problems that satisfy the principle of optimality are suitable for dynamic programming solutions
- Since exponential time is unacceptable for all but the smallest problems, dynamic programming is sometimes essential

Example: Binomial Coefficients

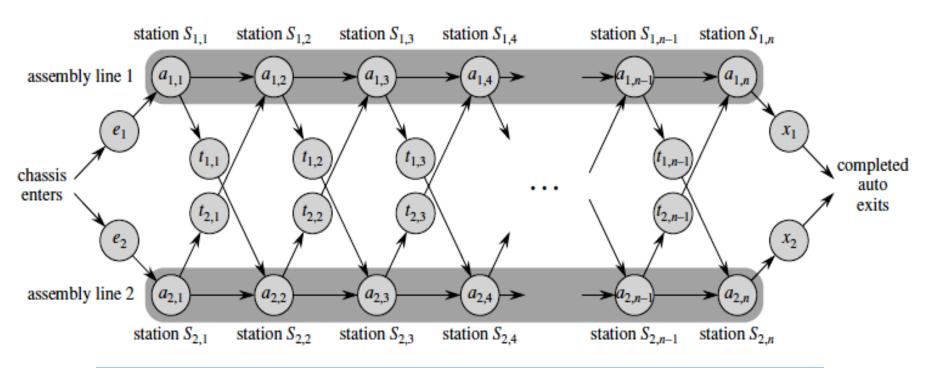
- $(x + y)^2 = x^2 + 2xy + y^2$, coefficients are 1,2,1
- $(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$, coefficients are 1,3,3,1
- $(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$, coefficients are 1,4,6,4,1
- $(x + y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$, coefficients are 1,5,10,10,5,1
- ♦ The n+1 coefficients can be computed for $(x + y)^n$ according to the formula c(n, i) = n! / (i! * (n i)!) for each of i = 0...n
- The repeated computation of all the factorials gets to be expensive
- We can use dynamic programming to save the factorials as we go

Solution by dynamic programming

```
n c(n,0) c(n,1) c(n,2) c(n,3) c(n,4) c(n,5) c(n,6)
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
```

- Each row depends only on the preceding row
- Only linear space and quadratic time are needed
- This algorithm is known as Pascal's Triangle

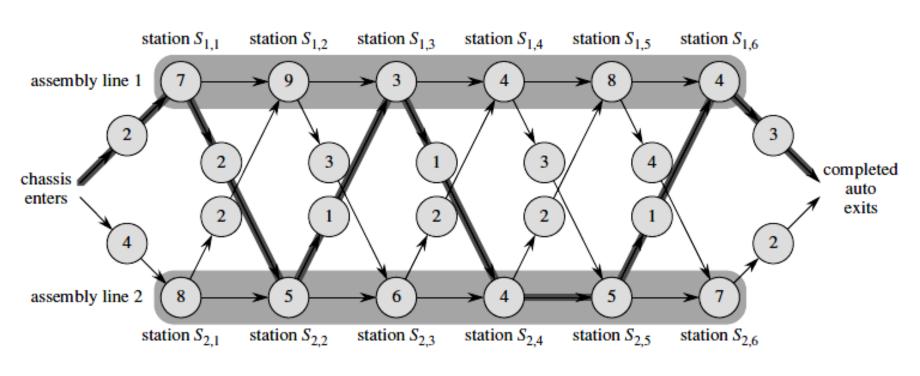
Assembly-line Scheduling



$$f_1[j] = \begin{cases} e_1 + a_{1,1} & \text{if } j = 1, \\ \min(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j \geq 2 \end{cases}$$

$$f_2[j] = \begin{cases} e_2 + a_{2,1} & \text{if } j = 1, \\ \min(f_2[j-1] + a_{2,j}, f_1[j-1] + t_{1,j-1} + a_{2,j}) & \text{if } j \geq 2 \end{cases}$$

..... Assembly-line Scheduling



 $f^* = 38$

..... Assembly-line Scheduling

```
FASTEST-WAY (a, t, e, x, n)
     f_1[1] \leftarrow e_1 + a_{1,1}
 2 f_2[1] \leftarrow e_2 + a_{2,1}
     for i \leftarrow 2 to n
 4
            do if f_1[j-1] + a_{1,j} \le f_2[j-1] + t_{2,j-1} + a_{1,j}
 5
                   then f_1[j] \leftarrow f_1[j-1] + a_{1,j}
                          l_1[i] \leftarrow 1
 6
                   else f_1[j] \leftarrow f_2[j-1] + t_{2,j-1} + a_{1,j}
 8
                          l_1[i] \leftarrow 2
                if f_2[j-1] + a_{2,j} \le f_1[j-1] + t_{1,j-1} + a_{2,j}
10
                   then f_2[i] \leftarrow f_2[i-1] + a_{2,i}
11
                          l_2[i] \leftarrow 2
                   else f_2[j] \leftarrow f_1[j-1] + t_{1,j-1} + a_{2,j}
12
13
                          l_2[i] \leftarrow 1
      if f_1[n] + x_1 \le f_2[n] + x_2
14
         then f^* = f_1[n] + x_1
15
                l^* = 1
16
17
       else f^* = f_2[n] + x_2
18
                l^* = 2
```

$$T(n) = \Theta(n)$$

Matrix-chain multiplication

- Matrix Chain-Product:
 - Compute $A=A_0*A_1*...*A_{n-1}$
 - A_i is $d_i \times d_{i+1}$
 - Problem: How to parenthesize?
- Example
 - B is 3 × 100
 - **C** is 100 × 5
 - D is 5 × 5
 - (B*C)*D takes 1500 + 75 = 1575 ops
 - $B^*(C^*D)$ takes 1500 + 2500 = 4000 ops

..... Matrix-chain multiplication

A Greedy Approach

- ♦ Idea #1: repeatedly select the product that uses (up) the most operations.
- Counter-example:
 - A is 10 × 5
 - B is 5 × 10
 - **C** is 10 × 5
 - D is 5 × 10
 - Greedy idea #1 gives (A*B)*(C*D), which takes 500+1000+500 = 2000 ops
 - ** A*((B*C)*D) takes 500+250+250 = 1000 ops

..... Matrix-chain multiplication

Another Greedy Approach

- ♦ Idea #2: repeatedly select the product that uses the fewest operations.
- Counter-example:
 - **A** is 101 × 11
 - B is 11 × 9
 - **C** is 9 × 100
 - D is 100 × 99
 - Greedy idea #2 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops
 - (A*B)*(C*D) takes 9999+89991+89100=189090 ops
- The greedy approach is not giving us the optimal value.

..... Matrix-chain multiplication

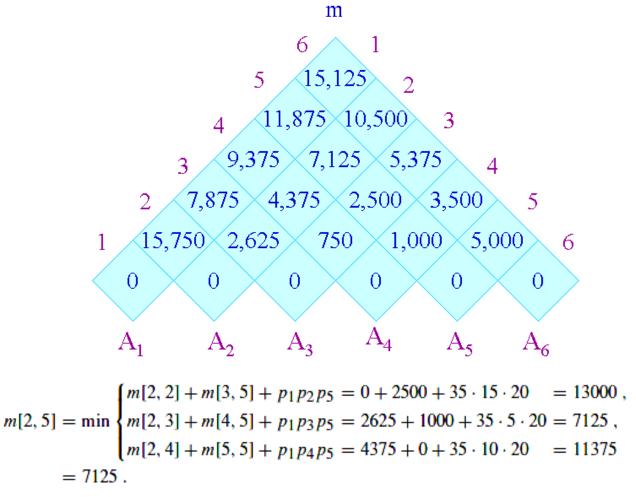
An Enumeration Approach

- Matrix Chain-Product Alg.:
 - Try all possible ways to parenthesize $A=A_0*A_1*...*A_{n-1}$
 - Calculate number of ops for each one
 - Pick the one that is best
- Running time:
 - The number of paranthesizations is equal to the number of binary trees with n nodes
 - This is exponential!
 - It is called the Catalan number, and it is almost 4ⁿ.

..... Matrix-chain multiplication

Matrix	Dimension
A1	30 x 35
A2	35 x 15
А3	15 x 5
A4	5 x 10
A5	10 x 20
A6	20 x 25

$$T(n) = O(n^3)$$



..... Matrix-chain multiplication

```
MATRIX-CHAIN-ORDER (p)
     n \leftarrow length[p] - 1
 2 for i \leftarrow 1 to n
           do m[i,i] \leftarrow 0
    for l \leftarrow 2 to n > l is the chain length.
           do for i \leftarrow 1 to n - l + 1
                    do j \leftarrow i + l - 1
 6
                        m[i, j] \leftarrow \infty
 8
                         for k \leftarrow i to j-1
                              do q \leftarrow m[i, k] + m[k + 1, j] + p_{i-1}p_kp_i
                                  if q < m[i, j]
10
                                     then m[i, j] \leftarrow q
11
12
                                           s[i, j] \leftarrow k
13
     return m and s
```

$$T(n) = O(n^3)$$

..... Matrix-chain multiplication

A "Recursive" Approach

- Define subproblems:
 - \blacksquare Find the best parenthesization of $A_i^*A_{i+1}^*...^*A_i^*$.
 - Let N_{i,j} denote the number of operations done by this subproblem.
 - \P The optimal solution for the whole problem is $N_{0,n-1}$.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say, the final multiply is at index i: $(A_0^*...^*A_i)^*(A_{i+1}^*...^*A_{n-1})$.
 - Then the optimal solution $N_{0,n-1}$ is the sum of two optimal subproblems, $N_{0,i}$ and $N_{i+1,n-1}$ plus the time for the last multiply.
 - If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
 - Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

Fibonacci Numbers

Introduction

- Fibonacci numbers:
 - $F_0 = 0$
 - $F_1 = 1$
 - $F_n = F_{n-1} + F_{n-2}$ for n > 1
- The initial terms of the sequence

$$\P(F_0, F_1,...) = (0,1, 1, 2, 3, 5, 8, 13, ...)$$

..... Fibonacci Numbers

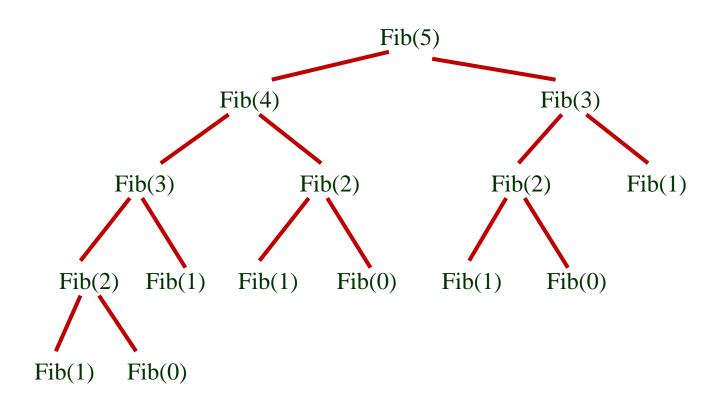
Computing Fibonacci Numbers

There is an obvious (but terribly inefficient) recursive algorithm:

```
    void Fib(n)
    {
        if (n == 0) or n==1 then
        return n;
        else
        return (F(n-1) + Fib(n-2))
        }
}
```

..... Fibonacci Numbers

Recursion Tree for Fib(5)



..... Fibonacci Numbers

Number of Recursive Calls

- The leafs of the recursion tree have values Fib(0)=0 or Fib(1)=1.
- Since Fib(n) can be calculated as the sum of all values in the leafs, there must be Fib(n) leafs with the value 1.
- This approach repeats unnecessary calculations
- Employing Dynamic Programming technique last calculated values are stored in a table to access it in next step.

..... Fibonacci Numbers

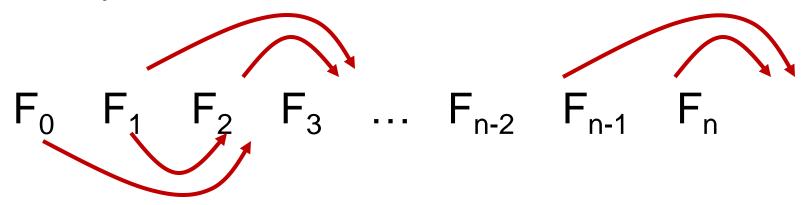
No Recursion

- Recursion adds overhead
 - extra time for function calls
 - extra space to store information on the runtime stack about each currently active function call
- Avoid the recursion overhead by filling in the table entries bottom up, instead of top down.

..... Fibonacci Numbers

Subproblem Dependencies

- Figure out which subproblems rely on which other subproblems
- Example:



..... Fibonacci Numbers

Order for Computing Subproblems

- Then figure out an order for computing the subproblems that respects the dependencies:
 - when you are solving a subproblem, you have already solved all the subproblems on which it depends
- Example: Just solve them in the order

..... Fibonacci Numbers

DP Solution for Fibonacci

```
Fib(n):

F[0] := 0; F[1] := 1;

for i := 2 to n do

F[i] := F[i-1] + F[i-2]

return F[n]
```

Can perform application-specific optimizations

e.g., save space by only keeping last two numbers computed

..... Fibonacci Numbers

More Efficient Recursive Algorithm

```
F[0] := 0; F[1] := 1; F[n] := Fib(n);
Fib(n):

if n = 0 or 1 then return F[n]
if F[n-1] = NIL then F[n-1] := Fib(n-1)
if F[n-2] = NIL then F[n-2] := Fib(n-2)
return (F[n-1] + F[n-2])
```

- Computes each F[i] only once.
- ♦ This technique is called memoization

