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Dynamic programming like the divide and conquer method, 

solves problem by combining the solutions of sub problems 

Divide and conquer method partitions the problem into 

independent sub problems, solves the sub problems recursively 

and then combine their solutions to solve the original problem. 

Dynamic programming is applicable, when the sub-problems are 

NOT independent, that is when sub-problems share sub sub-

problems. 

It is making a set of choices to arrive at optimal solution. 

A dynamic programming algorithm solves every sub-problem 

just once and then saves its answer in a table, thereby avoiding 

the work of re-computing the answer every time the sub-

problem is encountered 
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Optimization Problems 

Dynamic problem is typically applied to Optimization 

Problems 

 

In optimization problems there can be many possible 

solutions. Each solution has a value and the task is to 

find the solution with the optimal ( Maximum or 

Minimum) value. There can be several such solutions. 
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4 Steps of  Dynamic Programming Algorithm 

Characterize the structure of an optimal 

solution.  

Recursively define the value of an optimal 

solution. 

Compute the value of an optimal solution 

bottom-up.  

Construct an optimal solution from computed 

information  

 Often only the value of the optimal solution is 
required so step-4 is not necessary. 
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Dynamic programming relies on working “from the 

bottom up” and saving the results of solving simpler 

problems 

 These solutions to simpler problems are then used to 

 compute the solution to more complex problems 

Dynamic programming solutions can often be quite 

complex and tricky 

Dynamic programming is used for optimization problems, 

especially ones that would otherwise take exponential 

time 

 Only problems that satisfy the principle of 

 optimality are suitable for dynamic programming 

 solutions 

Since exponential time is unacceptable for all but the 

smallest problems, dynamic programming is sometimes 

essential 
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Example: Binomial Coefficients 

(x + y)2 = x2 + 2xy + y2, coefficients are 1,2,1 

(x + y)3 = x3 + 3x2y + 3xy2 + y3, coefficients are 1,3,3,1 

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4, 
coefficients are 1,4,6,4,1 

(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5, 
coefficients are 1,5,10,10,5,1 

The n+1 coefficients can be computed for (x + y)n according to 
the formula c(n, i) = n! / (i! * (n – i)!) 
for each of  i = 0..n 

The repeated computation of all the factorials gets to be 
expensive 

We can use dynamic programming to save the factorials as we go 

6 Dynamic Programming 



Solution by dynamic programming 

n  c(n,0)   c(n,1)   c(n,2)   c(n,3)   c(n,4)   c(n,5)   c(n,6) 

0       1 

1       1          1 

2       1          2         1 

3       1          3         3           1 

4       1          4         6           4         1 

5       1          5        10         10        5          1 

6       1          6        15         20       15         6          1 

Each row depends only on the preceding row 

Only linear space and quadratic time are needed 

This algorithm is known as Pascal’s Triangle  
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Assembly-line Scheduling ….. 
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Matrix-chain multiplication ….. 

Matrix Chain-Product: 

 Compute A=A0*A1*…*An-1 

 Ai is di × di+1 

 Problem: How to parenthesize? 

Example 

 B is 3 × 100 

 C is 100 × 5 

 D is 5 × 5 

 (B*C)*D takes 1500 + 75 = 1575 ops 

 B*(C*D) takes 1500 + 2500 = 4000 ops 
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A Greedy Approach 

Idea #1: repeatedly select the product that uses (up) 
the most operations. 

Counter-example:  

 A is 10 × 5 

 B is 5 × 10 

 C is 10 × 5 

 D is 5 × 10 

Greedy idea #1 gives (A*B)*(C*D), which takes 
500+1000+500 = 2000 ops 

 A*((B*C)*D) takes 500+250+250 = 1000 ops 
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Another Greedy Approach 

Idea #2: repeatedly select the product that uses the 
fewest operations. 

Counter-example:  

 A is 101 × 11 

 B is 11 × 9 

 C is 9 × 100 

 D is 100 × 99 

 Greedy idea #2 gives A*((B*C)*D)), which takes    
   109989+9900+108900=228789 ops 

 (A*B)*(C*D) takes 9999+89991+89100=189090 ops 

The greedy approach is not giving us the optimal value. 
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An Enumeration Approach 

Matrix Chain-Product Alg.: 

Try all possible ways to parenthesize  
 A=A0*A1*…*An-1 

 Calculate number of ops for each one 

 Pick the one that is best 

Running time: 

The number of paranthesizations is equal 
to the number of binary trees with n nodes 

 This is exponential! 

It is called the Catalan number, and it is 
almost 4n. 
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Matrix Dimension 

A1 30 x 35 

A2 35 x 15 

A3 15 x 5 

A4 5 x 10 

A5 10 x 20 

A6 20 x 25 

….. Matrix-chain multiplication ….. 
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A “Recursive” Approach 

Define subproblems: 
 Find the best parenthesization of Ai*Ai+1*…*Aj. 

Let Ni,j denote the number of operations done by this    
subproblem. 

 The optimal solution for the whole problem is N0,n-1. 

Subproblem optimality: The optimal solution can be 
defined in terms of optimal subproblems 

There has to be a final multiplication (root of the expression 
tree) for the optimal solution.   

Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1). 

Then the optimal solution N0,n-1 is the sum of two optimal 
subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply. 

 If the global optimum did not have these optimal 
subproblems, we could define an even better “optimal” 
solution. 
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The General Dynamic Programming Technique 

Applies to a problem that at first seems 
to require a lot of time (possibly 
exponential), provided we have: 

Simple subproblems: the subproblems can be 
defined in terms of a few variables, such as j, 
k, l, m, and so on. 

Subproblem optimality: the global optimum 
value can be defined in terms of optimal 
subproblems 

Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up). 
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Fibonacci Numbers 

Fibonacci numbers: 

 F0 = 0 

 F1 = 1 

 Fn = Fn-1 + Fn-2 for n > 1 

The initial terms of the sequence  

(F0, F1,…) = (0,1, 1, 2, 3, 5, 8, 13, …) 
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Computing Fibonacci Numbers 

There is an obvious (but terribly inefficient) recursive 
algorithm: 

void Fib(n) 

 { 

 if (n == 0) or n==1 then  

 return n; 

else  

 return (F(n-1) + Fib(n-2)) 

} 
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Recursion Tree for Fib(5) 

Fib(5) 

Fib(4) 

Fib(3) 

Fib(3) 

Fib(2) Fib(2) Fib(1) 

Fib(2) Fib(1) Fib(1) Fib(0) Fib(1) Fib(0) 

Fib(1) Fib(0) 
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Number of  Recursive Calls 

 The leafs of the recursion tree have values  
Fib(0)=0 or Fib(1)=1.  

 Since Fib(n) can be calculated as the sum of all 
values in the leafs, there must be Fib(n) leafs 
with the value 1. 

 This approach repeats unnecessary calculations  

  Employing Dynamic Programming technique   
last calculated values are stored in a table to 
access it in next step. 
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No Recursion 

Recursion adds overhead 
extra time for function calls 

extra space to store information on the 
runtime stack about each currently active 
function call 

Avoid the recursion overhead by filling in 
the table entries bottom up, instead of 
top down. 
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Subproblem Dependencies 

Figure out which subproblems rely on which other 
subproblems 

 

Example: 

F0    F1    F2    F3    …   Fn-2    Fn-1    Fn 
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Order for Computing Subproblems 

Then figure out an order for computing 
the subproblems that respects the 
dependencies: 

when you are solving a subproblem, you have 
already solved all the subproblems on which it 
depends 

Example:  Just solve them in the order 

 F0, F1, F2, F3,… 
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DP Solution for Fibonacci 

Fib(n): 
 F[0] := 0; F[1] := 1; 

 for i := 2 to n do 

 F[i] := F[i-1] + F[i-2] 

 return F[n] 

Can perform application-specific 
optimizations 
e.g., save space by only keeping last 

two numbers computed 
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More Efficient Recursive Algorithm 

F[0] := 0; F[1] := 1; F[n] := Fib(n); 

Fib(n): 
if n = 0 or 1 then return F[n] 

if F[n-1] = NIL then F[n-1] := Fib(n-1) 

if F[n-2] = NIL then F[n-2] := Fib(n-2) 

return (F[n-1] + F[n-2]) 

 
Computes each F[i] only once.  

This technique is called memoization 
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Dynamic 
Programming 
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