
Dynamic Programming

Prof. Muhammad Saeed

Dynamic programming like the divide and conquer method,

solves problem by combining the solutions of sub problems

Divide and conquer method partitions the problem into

independent sub problems, solves the sub problems recursively

and then combine their solutions to solve the original problem.

Dynamic programming is applicable, when the sub-problems are

NOT independent, that is when sub-problems share sub sub-

problems.

It is making a set of choices to arrive at optimal solution.

A dynamic programming algorithm solves every sub-problem

just once and then saves its answer in a table, thereby avoiding

the work of re-computing the answer every time the sub-

problem is encountered

2 Dynamic Programming

Optimization Problems

Dynamic problem is typically applied to Optimization

Problems

In optimization problems there can be many possible

solutions. Each solution has a value and the task is to

find the solution with the optimal (Maximum or

Minimum) value. There can be several such solutions.

3 Dynamic Programming

4 Steps of Dynamic Programming Algorithm

Characterize the structure of an optimal

solution.

Recursively define the value of an optimal

solution.

Compute the value of an optimal solution

bottom-up.

Construct an optimal solution from computed

information

 Often only the value of the optimal solution is
required so step-4 is not necessary.

4 Dynamic Programming

Dynamic programming relies on working “from the

bottom up” and saving the results of solving simpler

problems

 These solutions to simpler problems are then used to

 compute the solution to more complex problems

Dynamic programming solutions can often be quite

complex and tricky

Dynamic programming is used for optimization problems,

especially ones that would otherwise take exponential

time

 Only problems that satisfy the principle of

 optimality are suitable for dynamic programming

 solutions

Since exponential time is unacceptable for all but the

smallest problems, dynamic programming is sometimes

essential

5 Dynamic Programming

Example: Binomial Coefficients

(x + y)2 = x2 + 2xy + y2, coefficients are 1,2,1

(x + y)3 = x3 + 3x2y + 3xy2 + y3, coefficients are 1,3,3,1

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4,
coefficients are 1,4,6,4,1

(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5,
coefficients are 1,5,10,10,5,1

The n+1 coefficients can be computed for (x + y)n according to
the formula c(n, i) = n! / (i! * (n – i)!)
for each of i = 0..n

The repeated computation of all the factorials gets to be
expensive

We can use dynamic programming to save the factorials as we go

6 Dynamic Programming

Solution by dynamic programming

n c(n,0) c(n,1) c(n,2) c(n,3) c(n,4) c(n,5) c(n,6)

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

Each row depends only on the preceding row

Only linear space and quadratic time are needed

This algorithm is known as Pascal’s Triangle

7 Dynamic Programming

8 Dynamic Programming

Assembly-line Scheduling …..

9 Dynamic Programming

….. Assembly-line Scheduling …..

10 Dynamic Programming

….. Assembly-line Scheduling

Matrix-chain multiplication …..

Matrix Chain-Product:

 Compute A=A0*A1*…*An-1

 Ai is di × di+1

 Problem: How to parenthesize?

Example

 B is 3 × 100

 C is 100 × 5

 D is 5 × 5

 (B*C)*D takes 1500 + 75 = 1575 ops

 B*(C*D) takes 1500 + 2500 = 4000 ops

11 Dynamic Programming

A Greedy Approach

Idea #1: repeatedly select the product that uses (up)
the most operations.

Counter-example:

 A is 10 × 5

 B is 5 × 10

 C is 10 × 5

 D is 5 × 10

Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops

 A*((B*C)*D) takes 500+250+250 = 1000 ops

12 Dynamic Programming

….. Matrix-chain multiplication …..

Another Greedy Approach

Idea #2: repeatedly select the product that uses the
fewest operations.

Counter-example:

 A is 101 × 11

 B is 11 × 9

 C is 9 × 100

 D is 100 × 99

 Greedy idea #2 gives A*((B*C)*D)), which takes
 109989+9900+108900=228789 ops

 (A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the optimal value.

13 Dynamic Programming

….. Matrix-chain multiplication …..

An Enumeration Approach

Matrix Chain-Product Alg.:

Try all possible ways to parenthesize
 A=A0*A1*…*An-1

 Calculate number of ops for each one

 Pick the one that is best

Running time:

The number of paranthesizations is equal
to the number of binary trees with n nodes

 This is exponential!

It is called the Catalan number, and it is
almost 4n.

14 Dynamic Programming

….. Matrix-chain multiplication …..

15 Dynamic Programming

Matrix Dimension

A1 30 x 35

A2 35 x 15

A3 15 x 5

A4 5 x 10

A5 10 x 20

A6 20 x 25

….. Matrix-chain multiplication …..

16 Dynamic Programming

….. Matrix-chain multiplication …..

A “Recursive” Approach

Define subproblems:
 Find the best parenthesization of Ai*Ai+1*…*Aj.

Let Ni,j denote the number of operations done by this
subproblem.

 The optimal solution for the whole problem is N0,n-1.

Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems

There has to be a final multiplication (root of the expression
tree) for the optimal solution.

Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1).

Then the optimal solution N0,n-1 is the sum of two optimal
subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply.

 If the global optimum did not have these optimal
subproblems, we could define an even better “optimal”
solution.

17 Dynamic Programming

….. Matrix-chain multiplication

The General Dynamic Programming Technique

Applies to a problem that at first seems
to require a lot of time (possibly
exponential), provided we have:

Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j,
k, l, m, and so on.

Subproblem optimality: the global optimum
value can be defined in terms of optimal
subproblems

Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

18 Dynamic Programming

Fibonacci Numbers

Fibonacci numbers:

 F0 = 0

 F1 = 1

 Fn = Fn-1 + Fn-2 for n > 1

The initial terms of the sequence

(F0, F1,…) = (0,1, 1, 2, 3, 5, 8, 13, …)

19 Dynamic Programming

Introduction

Computing Fibonacci Numbers

There is an obvious (but terribly inefficient) recursive
algorithm:

void Fib(n)

 {

 if (n == 0) or n==1 then

 return n;

else

 return (F(n-1) + Fib(n-2))

}
20 Dynamic Programming

….. Fibonacci Numbers …..

Recursion Tree for Fib(5)

Fib(5)

Fib(4)

Fib(3)

Fib(3)

Fib(2) Fib(2) Fib(1)

Fib(2) Fib(1) Fib(1) Fib(0) Fib(1) Fib(0)

Fib(1) Fib(0)

21 Dynamic Programming

….. Fibonacci Numbers …..

Number of Recursive Calls

 The leafs of the recursion tree have values
Fib(0)=0 or Fib(1)=1.

 Since Fib(n) can be calculated as the sum of all
values in the leafs, there must be Fib(n) leafs
with the value 1.

 This approach repeats unnecessary calculations

 Employing Dynamic Programming technique
last calculated values are stored in a table to
access it in next step.

22 Dynamic Programming

….. Fibonacci Numbers …..

No Recursion

Recursion adds overhead
extra time for function calls

extra space to store information on the
runtime stack about each currently active
function call

Avoid the recursion overhead by filling in
the table entries bottom up, instead of
top down.

23 Dynamic Programming

….. Fibonacci Numbers …..

Subproblem Dependencies

Figure out which subproblems rely on which other
subproblems

Example:

F0 F1 F2 F3 … Fn-2 Fn-1 Fn

24 Dynamic Programming

….. Fibonacci Numbers …..

Order for Computing Subproblems

Then figure out an order for computing
the subproblems that respects the
dependencies:

when you are solving a subproblem, you have
already solved all the subproblems on which it
depends

Example: Just solve them in the order

 F0, F1, F2, F3,…

25 Dynamic Programming

….. Fibonacci Numbers …..

DP Solution for Fibonacci

Fib(n):
 F[0] := 0; F[1] := 1;

 for i := 2 to n do

 F[i] := F[i-1] + F[i-2]

 return F[n]

Can perform application-specific
optimizations
e.g., save space by only keeping last

two numbers computed
26 Dynamic Programming

….. Fibonacci Numbers …..

More Efficient Recursive Algorithm

F[0] := 0; F[1] := 1; F[n] := Fib(n);

Fib(n):
if n = 0 or 1 then return F[n]

if F[n-1] = NIL then F[n-1] := Fib(n-1)

if F[n-2] = NIL then F[n-2] := Fib(n-2)

return (F[n-1] + F[n-2])

Computes each F[i] only once.

This technique is called memoization

27 Dynamic Programming

….. Fibonacci Numbers …..

28 Dynamic Programming

Dynamic
Programming

ENDS

