Dynamic Programming

— R —— L — i —

Prof. Muhammad Saeed

Dynamic Programming
S e

¢ Dynamic programming like the divide and conquer method,
solves problem by combining the solutions of sub problems

¢ Divide and conquer method partitions the problem into
independent sub problems, solves the sub problems recursively
and then combine their solutions to solve the original problem.

¢ Dynamic programming is applicable, when the sub-problems are
NOT independent, that is when sub-problems share sub sub-
problems.

N 4

It is making a set of choices to arrive at optimal solution.

€ A dynamic programming algorithm solves every sub-problem
just once and then saves its answer in a table, thereby avoiding
the work of re-computing the answer every time the sub-
problem is encountered

Dynamic Programming 2

Dynamic Programming
r— L —

Optimization Problems

€ Dynamic problem is typically applied to Optimization
Problems

€ In optimization problems there can be many possible
solutions. Each solution has a value and the task is to
find the solution with the optimal (Maximum or
Minimum) value. There can be several such solutions.

Dynamic Programming

Dynamic Programming
o L ——

4 Steps of Dynamic Programming Algorithm

¢ Characterize the structure of an optimal
solution.

€ Recursively define the value of an optimal
solution.

¢ Compute the value of an optimal solution
bottom-up.

¢ Construct an optimal solution from computed
information

Often only the value of the optimal solution is
required so step-4 is not necessary.

Dynamic Programming 4

Dynamic Programming
s e

¢ Dynamic programming relies on working “from the
bottom up” and saving the results of solving simpler
problems

@i These solutions to simpler problems are then used to
compute the solution to more complex problems

¢ Dynamic programming solutions can often be quite
complex and tricky

¢ Dynamic programming is used for optimization problems,
especially ones that would otherwise take exponential
time
@ Only problems that satisfy the principle of
optimality are suitable for dynamic programming
solutions

¢ Since exponential time is unacceptable for all but the
smallest problems, dynamic programming is sometimes
essential

Dynamic Programming 5

Dynamic Programming
—_— L —e
Example: Binomial Coefficients
@ (x + V)2 =x?+ 2xy + y?, coefficients are 1,2,1
@ (x +vy)? =x3+ 3x?y + 3xy? + y3, coefficients are 1,3,3,1
@ (X +y)*=xt+ 43y + 6x2y% + 4xy3 + y4,
coefficients are 1,4,6,4,1
® (X +y)’ =x>+5x%y + 10x3y? + 10x2y3 + Sxy* + y>,
coefficients are 1,5,10,10,5,1

€ The n+1 coefficients can be computed for (x + y)" according to
the formulac(n, i) =n! / (il * (n - 1))
for each of 1 =0..n

€ The repeated computation of all the factorials gets to be
expensive

€ We can use dynamic programming to save the factorials as we go

Dynamic Programming 6

Dynamic Programming
S —

Solution by dynamic programming
¢ ncn0O) cn,a) c(n?2) c(n,3) c(n,4) c(nb) c(n,6)

¢ 0 1

@ 1 1 1

® 2 1 2 1

® 3 1 3 3 1

® 4 1 4 6 4 1

5 1 5 10 10 5 1

® 6 1 6 15 20 15 6 1

€ Each row depends only on the preceding row
€ Only linear space and quadratic time are needed
€ This algorithm is known as Pascal’s Triangle

Dynamic Programming 7

Dynamic Programming

Assembly-line Scheduling
station §, ; station§,, station§,; station §; 4

assembly line 1 @ @ @ @

station SI‘I station Sﬂz; station 52'3 station 32_14

station Sl,ﬂ—l station S]_Tn

station §;, , station §;,

Dynamic Programming

station §) | station §;, station §;; station§,, stationS;5 station§ g

AW AC

chassis completed
auto

enters i exits

station §;; station 5, station §;; station SE 4 Station 515 station 5‘2 &

j 2 3 4 5 6 j 2 3 4 5 6
AUl |9 [18]20(24)32 (35 . Ll (12112 "
fHl [12]16]22|25)|30(37 fo=38 Ll |1 |2(1]12]2 =1

Dynamic Programming
-— e ——————_—

..... Assembly-line Scheduling

T(n) =0(n)

10

Dynamic Programming
r— S —

Matrix-chain multiplication

¢ Matrix Chain-Product:
@ Compute A=A*A*...*A,
WA isd, xd,,
Problem: How to parenthesize?
¢ Example
w Bis 3 x100
W Cis 100 x 5
Wi Dis5x5
w (B*C)*D takes 1500 + 75 = 1575 ops
w B*(C*D) takes 1500 + 2500 = 4000 ops

Dynamic Programming 11

Dynamic Programming

r— S —
..... Matrix-chain multiplication
A Greedy Approach

© ldea #1: repeatedly select the product that uses (up)
the most operations.

¢ Counter-example:
@WAis10x5
Wi Bis5 x 10
W Cis10x5
Wi Dis5x%x10

@ Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops

W A*((B*C)*D) takes 500+250+250 = 1000 ops

Dynamic Programming 12

Dynamic Programming
- —_—

..... Matrix-chain multiplication
Another Greedy Approach

© ldea #2: repeatedly select the product that uses the
fewest operations.

¢ Counter-example:
W Ais 101 x 11
Wi Bis11x9
W Cis 9 x 100
Dis 100 x 99

Greedy idea #2 gives A*((B*C)*D)), which takes
109989+9900+108900=228789 ops

@ (A*B)*(C*D) takes 9999+89991+89100=189090 ops
¢ The greedy approach is not giving us the optimal value.

Dynamic Programming 13

Dynamic Programming
- —_—

..... Matrix-chain multiplication
An Enumeration Approach

€ Matrix Chain-Product Alg.:
@ Try all possible ways to parenthesize
A=A A FA
Calculate number of ops for each one
Pick the one that is best
¢ Running time:

@ The number of paranthesizations is equal
to the number of binary trees with n nodes

This is exponential!

|t is called the Catalan number, and it is
almost 4",

Dynamic Programming 14

Dynamic Programming

..... Matrix-chain multiplication

—
Matrix | Dimension
Al 30 x 35
A2 35x 15
A3 15x5
A4 5x10
AS 10 x 20
A6 20 X 25
T(n) = 0(n%)

ml[2.2] +m[3.5]+ pypaps = 0+25004+35-15-20 = 13000,
m[2, 3] +m[4, 5] + py p3ps = 2625 + 1000 +35-5-20 = 7125,
ml2,4] + m[5. 5]+ pypaps = 43754+0435.10.20 = 11375

m[2, 5] = min

= T125.

Dynamic Programming 15

Dynamic Programming

S ——————,
..... Matrix-chain multiplication

T(n) = 0(n?)

Dynamic Programming

Dynamic Programming

S —
..... Matrix-chain multiplication

A “Recursive” Approach

¢ Define subproblems:
4 Find the best parenthesization of A*A;,{*..."A;.

4 Let N; ; denote the number of operations done by this
subproblem

¥ The optimal solution for the whole problem is N , ;.

¢ Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems
'@ There has to be a final multiplication (root of the expression
tree) for the optimal solution.
® Say, the final multiply is at index i: (Ay*..."A)* (A "..."A).
@ Then the optimal solution N, , ; is the sum of two optimal
subproblems, Ng; and N;,q 4 plus the time for the last multiply.

@ |If the global optimum did not have these optimal
subproblems, we could define an even better “optimal”
solution.

Dynamic Programming 17

Dynamic Programming
r— S —
The General Dynamic Programming Technique

€ Applies to a problem that at first seems
to require a lot of time (possibly
exponential), provided we have:

& Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j,
K, |, m, and so on.

@i Subproblem optimality: the global optimum
value can be defined in terms of optimal
subproblems

@i Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

Dynamic Programming 18

Dynamic Programming
r— S —

Fibonacci Numbers

Introduction

¢ Fibonacci numbers:
WF,=0
WF, =1
@iF =F.+F_forn>1
€ The initial terms of the sequence
w(F,, F,...)=(0,1,1,2,3,5,8, 13, ..)

Dynamic Programming 19

Dynamic Programming
- —_—

..... Fibonacci Numbers

Computing Fibonacci Numbers

¢ There is an obvious (but terribly inefficient) recursive
algorithm:

¢ void Fib(n)
{
if (n == 0) or n==1 then

return n;

else
return (F(n-1) + Fib(n-2))

Dynamic Programming 20

Dynamic Programming
- —_—

..... Fibonacci Numbers

Recursion Tree for Fib(5)

Fib(5)
/ = —
/F : 4)\ } b(?’)\
Fib(3) Fib(2) Fib(2) Fib(1)

/NN /N

Fib2) Fib(l) Fib(l) Fib(0) Fib(l) Fib(0)

Fib(1) Fib(0)

Dynamic Programming 21

Dynamic Programming
- —_—

..... Fibonacci Numbers

Number of Recursive Calls

@ The leafs of the recursion tree have values
Fib(0)=0 or Fib(1)=1.
Since Fib(n) can be calculated as the sum of all

values in the leafs, there must be Fib(n) leafs
with the value 1.

W This approach repeats unnecessary calculations

@ Employing Dynamic Programming technique
last calculated values are stored in a table to
access it in next step.

Dynamic Programming
- —_—

..... Fibonacci Numbers

No Recursion

€ Recursion adds overhead
Wi extra time for function calls

® extra space to store information on the
runtime stack about each currently active
function call
¢ Avoid the recursion overhead by filling in
the table entries bottom up, instead of
top down.

Dynamic Programming 23

Dynamic Programming

Subproblem Dependencies

¢ Figure out which subproblems rely on which other
subproblems

¢ Example:

N A\
Fo F - F; ... Fn-2 F.. F,
N

Dynamic Programming 24

Dynamic Programming
- —_—

..... Fibonacci Numbers

Order for Computing Subproblems

© Then figure out an order for computing
the subproblems that respects the
dependencies:

@ when you are solving a subproblem, you have
already solved all the subproblems on which it
depends

¢ Example: Just solve them in the order
Fo, Fl’ FZ’ F3’..o

Dynamic Programming 25

Dynamic Programming
e—— et

..... Fibonacci Numbers

DP Solution for Fibonacci

Fib(n):
F[O] :=0; F[1] :=1;
fori:=2tondo
F[i] := F[i-1] + F[i-2]
return F[n]
Can perform application-specific
optimizations

e.g., save space by only keeping last
two numbers computed

Dynamic Programming 26

Dynamic Programming
- —_—

..... Fibonacci Numbers

More Efficient Recursive Algorithm

¢ F[0] :=0; F[1] :=1; F[n] := Fib(n);
¢ Fib(n):
® if n =0 or 1 then return F[n]
& if F[n-1] = NIL then F[n-1] := Fib(n-1)
& if F[n-2] = NIL then F[n-2] := Fib(n-2)
@ return (F[n-1] + F[n-2])

¢ Computes each F[i] only once.
¢ This technique is called memoization

Dynamic Programming 27

Dynamic Programming

28

