Amortized Analysis

Prof. Muhammad Saeed

Some of the slides are from Prof. Leong Hon Wai’s resources at National University of Singapore



= Amortized Analysis

iR

What is Amortized Analysis ?

® In amortized analysis, the time required to perform
a sequence of operations is averaged over all the
operations performed.

> No involvement of probability

>Average performance on a sequence of operations,
even some operation is expensive.

>Guarantee average performance of each operation
among the sequence in worst case.

Amortized analysis is not just an analysis tool, it is also a way of
thinking about designing algorithms.

4/15/2012 Amortized Analysis



= Amortized Analysis

iR

Methods of Amortized Analysis

0 Aggregate Method: we determine an
upper bound T(n) on the total sequence
of n operations. The cost of each will
then be T(n)/n.

O Accounting Method: we overcharge
some operations early and use them
to as prepaid charge later.

U Potential Method: we maintain credit
as potential energy associated with
the structure as a whole.

4/15/2012 Amortized Analysis



= Amortized Analysis

iR

1. Aggregate Method

& Show that for all n, a sequence of n operations take
worst-case time T(n) in total

€ In the worst case, the average cost, or amortized cost ,
per operation is T(n)/n.

&l The amortized cost applies to each operation, even

when there are several types of operations in the
seqguence.

4/15/2012 Amortized Analysis



= Amortized Analysis

iR

Aggregate Analysis: Stack Example

-1

Multi-
Push(S,x) Pop(S) 00p(S K)
Worst-case O(min(|S|,k)
COsSt: o) o) = 0O(n)

Amortized cost: O(1) per operation
4/15/2012 Amortized Analysis



T

= Amortized Analysis

....... Aggregate Analysis: Stack Example

& Sequence of n push, pop, Multipop operations

L Worst-case cost of Multipop is O(n)
L Have n operations
O Therefore, worst-case cost of sequence is O(n?)

i Observations

U Each object can be popped only once per time that it's
pushed

L Have <= n pushes => <= n pops, including those in
Multipop

U Therefore total cost = O(n)

U Average over n operations => O(1) per operation on
average

& Notice that no probability involved

4/15/2012

Amortized Analysis



= Amortized Analysis

T

2. Accounting Method

#i Charge | th operation a fictitious amortized cost C,,

where $1 pays for 1 unit of work (i.e., time).
1 Assign different charges (amortized cost ) to different
operations

= Some are charged more than actual cost
= Some are charged less
®l This fee is consumed to perform the operation.
& Any amount not immediately consumed is stored in the
bank for use by subsequent operations.
# The bank balance (the credit) must not go negative!

14 14
We must ensure that ch, < Zéi
for all n.

i=l i=l1

# Thus, the total amortized costs provide an upper bound
on the total true costs.

4/15/2012 Amortized Analysis 7



= Amortized Analysis

iR

..... Accounting Method: Stack Example

Push(S,x) Pop(S) Multi-pop(S,k)
-Assllgned 5 0 0
Cost:
*Actual cost: 1 1 min(|S|,k)

Push(S,x) pays for possible later pop of x.

4/15/2012 Amortized Analysis




= Amortized Analysis

..... Accounting Method: Stack Example

& When pushing an object, pay $2

$1 pays for the push

L $1 is prepayment for it being popped by either pop
or Multipop

U Since each object has $1, which is credit, the
credit can never go negative

U Therefore, total amortized cost = O(n), is an upper
bound on total actual cost

4/15/2012 Amortized Analysis



T

= Amortized Analysis

..... Accounting Method: Binary Counter

Introduction

® Kk-bit Binary Counter: A[0..k-1]

x = >K-LIA[i]- 2

INCREMENT(A)

1. i«<0

2. whilei<length[A] and A[i] =1

3. do Afi]«< 0 > reset a bit
4, < 1+1

5. if i <length[A]

6. then AJi] <« 1 > set a bit

4/15/2012 Amortized Analysis

10



T

= Amortized Analysis

..... Accounting Method: Binary Counter

Consider a sequence of n increments. The
worst-case time to execute one increment Is

O(K). Therefore, the worst-case time for n

increments is N - O(K) = O(n- k).

WRONG! In fact, the worst-case cost for N
increments is only ®(N) < O(n- k).

4 )
Let’s see why. Note: You’d be correct
if you'd said O(n- k).
But, it's an overestimate.
\_ J

4/15/2012 Amortized Analysis

11



iR

= Amortized Analysis

..... Accounting Method: Binary Counter
ctr | A[4] | A[3] | A[2] | A[1]| A[0] | Cost
0 0 0 0 0 0 0
1 0 0 0 0 1 1
2 0 0 0 1 0 3
Total cost of n operations 3 | o | o - 1 | 1 4
A[0] flipped everyop  n 4 10101110710 /
5 0 0 1 0 1 8
A[1] flipped every 2 ops n/2
SRR 4 P 6 0 0 1 1 0 10
A[2] flipped every 4 ops n/2? 7 0 0 - 1 1 1
A[3] flipped every 8 ops n/23 8 0 1 0 0 0 15
9 0 1 0 0 1 16
. . 10 0 1 0 1 0 18
All] flipped every 2' ops n/2'
[} fipped every 2! op 1 o [ 1 O 1 [ 1] 10

4/15/2012

Amortized Analysis

12




T

= Amortized Analysis

..... Accounting Method: Binary Counter
denl |
Cost of n increments |= —
o L2
<n i =2n
o 2
= 0(n)

Thus, the average cost of each increment operation is

®(n)/n = O(1).

4/15/2012

Amortized Analysis

13



= Amortized Analysis

..... Accounting Method: Binary Counter

Charge an amortized cost of $2 every time a bit is set from 0 to 1

« $1 pays for the actual bit setting.
« $1 is stored for later re-setting (from 1 to 0).

At any point, every 1 bit in the counter has $1 on it... that pays for
resetting it. (reset is “free”)

Example:

0O 0 0 1%80 1%0
0O 0 0 1%8Q 1%11% Cost = $2

O 0 0 1%1%10 O Cost = $2

4/15/2012 Amortized Analysis 14



= Amortized Analysis

iR

..... Accounting Method: Binary Counter

INCREMENT(A)
1< 0
. while i < length[A] and A[i] = 1
do AJi] « O > reset a bit
l«—1+1
If 1 <length[A]
then Alil«~1 © seta bit

Sy O1 & Wi =

& When Incrementing,
O Amortized cost for line 3 = $0
O Amortized cost for line 6 = $2

@ Amortized cost for INCREMENT(A) = $2
@ Amortized cost for n INCREMENT(A) = $2n =O(n)

4/15/2012 Amortized Analysis



T

= Amortized Analysis

3. Potential Method

IDEA: View the bank account as the
potential energy (as in physics) of
the dynamic set.

FRAMEWORK:

i Start with an initial data structure D,
& Operation i transforms D, , to D..

# The cost of operation i is c..

#i Define a potential function ® : {D} - R,
such that ®(D,) = 0 and ®(D,) > O for all i.

# The amortized cost ¢, with respectto @ Is
defined to be ¢, = c,+ ®(D,) — ®(D, ,).

4/15/2012 Amortized Analysis

16



= Amortized Analysis

iR

..... Potential Method

@ Like the accounting method, but think of the
credit as potential stored with the entire data
structure.

1 Accounting method stores credit with
specific objects while potential method
stores potential in the data structure as a
whole.

] Can release potential to pay for future
operations

@ Most flexible of the amortized analysis
methods ).

4/15/2012 Amortized Analysis 17



. Amortized Analysis

"

..... Potential Method
¢,;=c+ ®(D) —d(D_,)

\ J
e

potential difference A®,

dIf AD,>0, then ;> c,. Operation |
stores work In the data structure for later
use.

dIf A®,<O,then ¢ <c,. The data
structure delivers up stored work to help
pay for operation I.

4/15/2012 Amortized Analysis

18



= Amortized Analysis

ﬁ[_ ..... Potential Method

The total amortized cost of n operations is
Zéi = Z(Ci +D(D,) _CD(Di—l))
=1 i=1

Summing both sides telescopically.

=36, +®(D,) - ®(D,)

>>'c;  since ®(D,) >0 and ®(D,) = 0.
=1

4/15/2012 Amortized Analysis

19



= Amortized Analysis

iR

..... Potential Method: Stack Example
Define: ¢(D;) = #items In stack Thus, ¢(D,)=0.

Plug in for operations:

Push: ¢ =c +o(D;) - ¢(D;,)
=1+ j - (j-1)
=2

Pop: ¢ =c;+¢(D) - ¢(D;4)
=1+ (j-1)- ]
=0

Multi-pop: & =¢; + ¢(Dy) - §(D; ;)
= k" + (j-k’) - ] k’=min(|S],k)
=0

4/15/2012 Amortized Analysis

20



= Amortized Analysis

..... Potential Method: Binary Counter

Define the potential of the counter after the it" operation
by ©(D,) = b, the number of 1’s in the counter after the it"
operation.

Note:
* ®(D,) =0,
* ®(D;) = 0 for all 1.

Example:

O 0010 120
(0 0 0 1%90 1% 0  Accounting method)

4/15/2012 Amortized Analysis 21



= Amortized Analysis

iR

..... Potential Method

Assume ith INCREMENT resets t; bits (in line 3).
Actual costc, = (t; + 1)

Number of 1's after ith operation: b,=b,_, -t +1
The amortized cost of the | th INCREMENT is

¢=c+ oD, - o(D,_,)
=G+ +(1-1
=2

Therefore, n INCREMENTSs cost ©(n) in the worst case.

4/15/2012 Amortized Analysis 22



= Amortized Analysis

iR

4/15/2012

Amortized Analysis

23



= Amortized Analysis

iR

4/15/2012

Amortized Analysis

24



= Amortized Analysis

iR

4/15/2012

Amortized Analysis

25



